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PREFACE

This report covers research sponsored by the National Aeronautics
and Space Administration, Langley Research Center, under Contract No. NAS1-
4900. Mr. D. R. Kobett, project leader, was responsible for overall program
direction. Mr. D. I. Sommerville carried out the reqﬁisite nodifications and
improvements of the computer program.
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NOTATION

chord of one panel
span of one panel

half wavelength in Fourier expansion of spanwise deflection shape

(Eq. (3))

coefficient in Fourier expansion of spanwise deflection shape

(Eq. (3))
velocity of sound in undisturbed stream
modulus of elasticity of panel material
structural damping coefficient
N-1
identity matrix
wa/U ; nondimensional flutter fregquency
number of streamwise panels
streamwise mode number
Mach number
number of spanwise panels
spanwise mode number
aerodynamlc pressure
flutter vector
elements of Tlutter vector
dynamic pressure in undisturbed stream
modulus of j'B component of flutter vector (Eq. (8); Table II)
time
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¥n

velocity in undisturbed stream

panel deflection

nondimensional streamwise coordinate (dimensional coordinate = xa)
nondimensional spanwise coordinate (dimensional coordinate = yb)
TSE/q(l—vg) ; bending stiffness - dynamic pressure parameter
phase angle of j component of flutter vector (Eq. (8); Table IT)
TPS/P ; mass ratio parameter

Poisson's ratio

mass density in undisturbed stream

mass density of panel material

ratio of panel thickness to chord

spanwise coordinate in sine series expansion of spanwise deflection
shape (Eq. (3))

streamwise deflection function
spanwise deflection function

dimensional flutter frequency
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SUMMARY

A flutter analysis is conducted of simply supported flat panel
arrays made up of one spanwise bay and one, two and three streamwise bays.
The arrays are of finite span in contrast with previous analyses which treat
either the two-dimensional case or the case of infinite span divided into
equal bays. Use is made of linear plate theory and complete, linearized,
three~dimensional, inviscid aerodynamic theory. The effects of structural
damping and aerodynamic and structural coupling are included. Solutions to
the flutter equations are obtained using the Galerkin technique.

Critical flutter boundaries are computed for panels of aspect ratio
2 and 4, Mach number 1.35, and structural damping coefficient equal to 0.0l.
The thickness required to prevent flutter is shown to increase with increasing
number of streamwise bays. The effect of increasing the number of bays from
one to two is considerably larger than the effect of adding a third panel to
a two bay array. The effect is also larger for the larger aspect ratio.

The flutter mode shapes of the multiple bay arrays are dominated by
structurally uncoupled modes. It is concluded that aerodynamic coupling is
the primary mechanism of destabilization.



I. INTRODUCTION

Panel flutter is defined as the oscillatory instability induced in
a thin panel in an airstream by interaction between the airstream and panel
motion. The phenomenon is of interest to missile and aircraft designers where
the vehicle skin is made up of thin panel arrays whose sustained oscillation
would be objectionable. Extensive theoretical and experimental effort has
therefore been invested in attempts to clarify the flutter phenomenon and, in
particular, to develop a method(s) for predicting its occurrence. Although
these efforts have met with some success, many relevant questions remain to be
answered. The present report is concerned with one of these questions, namely,
the effect of nmultiple streanwise bays on the flutter characteristics of an
array of flat panels in the low supersonic Mach number regime.

Early investigators concentrated on the analysis of panel arrays
with one bay in the streamwise direction. However, panels ordinarily occur
in arrays with multiple streamwise bays; so the later configuration soon came
under study. Panel arrays with multiple streamwise bays have been investi-
gated by Rodden [2]*, Dowell[3], Zeydel [4,5 and ILock[B]. References 2,3,4 and
6 are analyses of two-dimensional arrays (i.e., arrays composed of infinite
aspect ratio panels), while the case of an array of infinite span separated
into uniform finite bays is treated in Eﬂ. All of the analyses use linear
plate theory to describe the structure and all but [3] use exact linearized
aerodynamic theory for the pressure formulation (Ref. 3 uses the piston theory
approximation).

Rodden[Z] and Dowell [3] both showed that the number of streamwise
bays has little effect on the flutter of pinned edge panels for Mach number
greater than 1.56. 1In BJ Zeydel used the Galerkin technigque to compute
flutter boundaries (conditions at the onset of flutter) for two-dimensional
pinned edge panel arrays at lower Mach numbers. He found increasing the
number of streamwise bays to have a pronounced destabilizing effect (i.e.,
causes flutter to occur for a wider range of conditions). The analysis
excluded the effects of structural coupling and structural damping. Lockﬂﬂ
included structural coupling and structural danping in his analysis and com-
puted flutter boundaries for one and two bay clamped edge arrays and two bay
pinned edge arrays throughout the Mach number range 1.2 to 2.0. He found that
the flutter of clamped edge arrays was insensitive to the number of stream-
wise bays while his results for the pinned edge arrays agreed with Zeydel's
in indicating a pronounced effect at the lower Mach numbers.

Numbers in brackets refer to the references.
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In [5] Zeydel extended his previous analysis to include panel arrays
with:

(2) 1Infinite span divided into finite bays,
(b) Edge conditions varying between pinned and clamped, and

(c) One and two streamwise bays.

Structural coupling and structural damping were included and flutter bound-
aries were computed for Mach number 1.35 and aspect ratios of 4 and infinity.
His infinite aspect ratio results, interpreted in terms of aluminum panels at
sea level, show the flutter of clamped edge panels to be insensitive to the
number of streamwise bays, in agreement with ILock; the pinned edge panels show
a pronounced sensitivity in agreement with his (Zeydel's) previous results.
The panels of aspect ratio 4 were found to have flutter characteristics very
similar to those of the infinite aspect ratio panels.

The purpose of the present analysis is to gain further insight into
the practical aspects of panel flutter by investigating arrays of finite span
and moderate aspect ratio where three-dimensionality is emphasized. Finite
panel arrays with one spanwise bay and one, two and three streamwise bays are
analyzed. Exact linearized aerodynamic theory and a Galerkin approach are
used and the effects of structural coupling and structural damping are in-
cluded. Flutter boundaries are computed for simply supported arrays at Mach
number 1.35 for panel aspect ratios of 2 and 4.

The analytical technigue is described in detail in [1] and therefore
only briefly discussed here in part II. The numerical procedure is described
in part III and the results are presented and discussed in part IV.

ITI. ANALYSIS

The physical systems to be analyzed consist of finite arrays of
similar flat panels exposed on one side to a uniform supersonic stream of
Mach number M (see Fig. 1).%¥ The panel edges are free to rotate but re-
strained against transverse deflection. To make the aerodynamics tractable
it is assumed that the array is bordered by an infinite impermeable surface
extending upstream and that acoustic pressures on the underside of the array
are neglected. Analysis details are completely described in [j] and are
therefore only briefly outlined here.

The dynamic equation of motion for the transverse deflection, w ,
is obtained using linear plate theory and exact, linearized aerodynamic theory.

A1l tables and figures appear in the Appendix.
3



The deflection is then approximated by

s
v = elot 5 g, n8p(xn(y) (1)

£=ml

where w = oscillation frequency
t = time

@z(x) = natural vibration mode shape of a multi-bay beam satisfying the
boundary conditions on the spanwise edges of the panel array
(4 refers to mode number)

¢n(y) = natural vibration mode shape of a multi-bay beam satisfying the
boundary conditions on the streamwise edges of the panel
array (n refers to mode number)

dg,n = wveighting coefficients

Observe that the streamwise (x) deflection shape is approximated by a
summation of functions Qz(x) and the spanwise (y) deflection shape by the
single function ¢n(y) Previous experience has shown that the single func-
tion representation for the spanwise shape is satisfactory for the determina-
tion of stability boundaries.

An approximate solution is sought using the Galerkin technique.
The procedure leads to a set of equations

2 L N
2
> 9%,n {Z‘\'ﬁ,z - uk Bﬁ,z} + [ f p(x,¥ )85 (x)y, (y)dyax = 0 (2)
£=ml 0 O
IT]. = mloocpnle
where AI and B"£ are arrays which depend only on the number of stream-

wise and chordw1se panels and the boundary conditions on the panel edges.



k = reduced frequency* = wa/U
p = mass ratio parameter = TPS/P
Z = dynanic pressure -~ stiffness parameter = T3E/q(l—v2)

The term p(x,y) is the pressure on the deflected panels which is
to be obtained from exact, linearized, three-dimensional, inviscid aerody-
namic theory. A completely general solution is not available for p(x,y)
and use is therefore made of a result from [7] which gives the perturbation
pressure D, p On a surface in harmonic motion with arbitrary chordwise
deflection @m(x) , and sinusoidal spanwise deflection sin uﬂ¢/B . The total
perturbation pressure on the surface is obtained from a superposition of
Pu,m terms by expanding the spanwise deflection shape in a sine series,

o= > B, , sin ug/B (3)

m,u
u

The expansion (3) gives vn flanked by periodic reflections. By properly
choosing the wavelength B the reflections can be uncoupled aerodynamically,
thus achieving the effect of an isolated finite panel array.¥¥

The approach described above ultimately yields a formulation for the
transverse deflection w expressible in matrix form as

{zx + ,:l/(l+ig)J [”k%ﬁ}mmm,m]}{qm = {o} (4)

In (4), I is the identity matrix and Q is the "flutter" vector with
elements equal to the 9¢,n of equation (1). The matrices Cﬁ,m and Dﬁ,m
are functions of:

Number of chordwise and spanwise panels
Panel boundary conditions
Mach number

Aspect ratio

Reduced frequency, k .

* See nomenclature list for detailed definition of notation.
*% For a detailed discussion see [1] pages 10 and 60.
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Solutions to the eigenvalue equation (4) represent points of neutral stabil-
ity, i.e., conditions under which the panels oscillate harmonically under the
influence of the air stream. Loci of these points of neutral stability
define the flutter boundaries which are the objective of the present analysis.

The techniques of the numerical computation of the flutter bound-
aries are described in the next section. :

III. NUMERICAL PROCEDURE

Flutter boundaries are obtained by the following procedure. The
general physical situation is defined first by specifying the following:

(1) Number of spanwise panels*

(2) Number of chordwise panels

(3) Panel boundary conditions¥

(4) Mach number*

(5) Aspect ratio

(6) Magnitude of structural damping*

Equation (4) can then be expressed functionally as

AN +[Mk2Pﬁ,m+Rﬁ,m(k)J} Q=130 (5)

where Pﬁ)m is a known complex array and Rf,m is @ complex array depending
only on reduced frequency %k . The criterion for a nontrivial solution of
(5) is

Det {ZI + [ukgP,—n,mRﬁ,m(k)] =0 (6)

*¥ A fixed value is assigned to this item in the present analysis. The
computer program can accommodate a range of values within the restric-
tions defined in [1].
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A gspecial algorithm Eﬂ is used to compute the pairs of real p and Z and
the corresponding vectors Qp which satisfy (6) for successively selected
values of reduced frequency k . These pairs of values are then plotted in
the l/u - z1/3 plane.* Distinct continuous stability boundaries are con-
structed by connecting the plotted points on the basis of continuity of
reduced frequency and modal content of the vector Qp .¥* Multiple stability
boundaries are thereby obtained for each physical situation analyzed (Figs.
3-8).

Each boundary determined in the above manner corresponds to a locus
of points of neutral stability, tacitly assumed to divide regions of flutter
(unstable) from regions of no flutter (stable). For the closed boundaries
such as the second mode loop in Fig. 3, the unstable region is inside the
loop. For the open boundaries the unstable region is to the left.

A given combination of material and altitude defines a hyperbola in
the generalized parameter plane because

=7 (7)

s _of em )3, )
o5 | pM2c2(1-12) 1/u

The intersection of the hyperbola with a stability boundary identifies the
minimum panel thickness**¥ required to prevent flutter in the mode character-
ized by the associated Q; . The right-most intersection is critical since
it determines the minimum thickness required to completely suppress flutter.

In carrying out the above procedure for determining stability
boundaries it is also necessary to specify the following:

Spanwise mode ¥y,

Range of the parameter 1/p

Number of terms in the expansion of V¢, (Eq. (3))
Chordwise modes &y

Reduced frequency k

¥ The conventional l/u - Zl/3 plane is selected for displaying the
boundaries in preference to the optional Wy - Z plane.
%% The conputer program provides Q in polar form normalized on the maxi-
mumn element +to facilitate analysis of the modal content.
¥%¥¥% The term "thickness" is consistently used throughout this report to
denote the nondimensional ratio of panel thickness to chord.

7



Permanent values were assigned to the first three items as follows. The
fundamental beam vibration mode (7 frequency) was selected for the spanwise
mode, y, , on the basis of previous experience. Solutions of (6) were ob-
tained throughout the range 0.002 < 1/u < 0.5 to insure complete definition
of boundaries in the range of physical interest 0.01 < 1/u < 0.2. Twenty non-
zero terms were used in the expansion of V¥, (Eq. (3)) after initial compar-
ative computations showed a variation of less than 0.1 per cent in computed
results using 15 and 20 terms.* (The number of terms used has negligible
effect on computation time.)

Convergence of the vector Q 1is the criterion used for selection
of the chordwise modes, &, , to be used in the analysis. The modes were
selected to insure infallible identification of the critical envelope of
boundaries and definition of the envelope location to a precision commensurate
with the precision of the input parameters.

Reduced frequencies were selected by observing the development of
the stability boundaries as the computations progressed. Typically, initial
computations were made for a set of frequencies ranging from about 0.2 to 2.0
in steps of 0.4. These computations yielded points'on the boundaries which
guided the selection of frequencies for subsequent calculations. By repeat-
ing the above loop the boundaries were gradually defined throughout the range
of interest of the parameter l/u .

IV. NUMERICAL RESULTS

Stability boundaries were computed for arrays of simply supported
panels for Mach number 1.35 and a structural damping coefficient of 0.0l.
Six configurations were analyzed, namely, arrays with one, two and three
chordwise bays, each with alternate panel aspect ratios of 2 and 4. The
stability boundaries are shown in Figs. 3 to 8%% and the critical (right-most)
envelopes for the two aspect ratios are superimposed in Figs. 9 and 10 to
illustrate the effect of the number of chordwise bays. The broken line curve
in the latter two figures is the hyperbola defined by aluminum panels at sea
level flight conditions.

* Recall that the spanwise deflection shape, Y, , is expanded in a sine
series (Eq. (3)). The expansion in effect yields an odd periodic func-
tion with ¢, as one-half cycle aerodynamically isolated from its anti-
symmetric reflections. For a detailed discussion see [l] pp. 10 and 60.

*¥% Where some of the boundaries appear to be extrapolated in the increasing
l/u direction, computed points are available outside the plot scale to
guide construction of the boundary. Boundaries shown by broken lines
were not computed in detail because they are obviously subcritical.



Before discussing the individual boundaries it is useful to point
out some common features not conveniently shown in the figures. Each boundary
is identifiable with a particular mode corresponding to the maxinmum element
in the flutter vector Qn *. Coupling between modes varies along any given
boundary but the dominant mode is the same throughout. Weakest coupling
between modes occurs to the right in the figures, this being particularly
noticeable in the closed loops typified by the second mode contours in Figs.

3 and 4. The latter feature is beneficial because it means that definition
of the critical (right-most) envelope can be accomplished using a moderate
number of chordwise modes. -

Computational details are discussed next followed by examination of
the effects of aspect ratio and number of chordwise modes.

A. Computational Details

Figures 3 and 4 illustrate the stability boundaries for the panel
arrays with one chordwise bay. These boundaries were obtained using the first
four natural beam modes for ¢, . Satisfactory convergence of the boundaries
was verified by obtaining at least one point on each boundary in a six mode
computation. The adequacy of four mode analyses is also implied by the fact
that the critical envelope is made up of those portions of the first and
second mode boundaries where coupling with the fourth mode is negligible.

(See Table IT where the modulus of the fourth mode element is shown to be less
than 0.5 per cent of the maximum.) Four boundaries were obtained, associated
with the four chordwise modes & .

Stability boundaries for the arrays with two chordwise panels are
shown in Figs. 5 and 6. The first and third mode boundaries were obtained
initially using the first four chordwise modes; the boundaries shown were
then obtained using modes one to six. Addition of the two higher modes had
imperceptible effect on the location of the boundaries (although reduced
frequencies increased slightly). The fifth mode boundary was obtained using
modes three through eight. 1Its location was verified in computations using
modes one through six and three through six wherein points were obtained that
are indistinguishable from the plotted boundary when superimposed on the
figures. The sixth mode boundary, obtalned using modes one to six and three
to eight, is not defined in as much detail as the others because it is obvi-
ously subcritical. It is noteworthy that second and fourth mode boundaries
were not identified even though a wide range of frequencies was investigated.

¥ A few boundaries are denoted as coupled mode boundaries indicating that
two or more elements are nmuch larger than the rest. The largest is
named first.



These boundaries may either exist outside the l/u range of interest or be con-
fined to a region in the flutter parameter plane too small to be detected by
the numerical procedure. It is reasonable to conclude, however, that the
second and fourth mode boundaries are unimportant on the basis that they are
structurally coupled modes and Figs. 5 and 6 indicate the uncoupled modes to
be most critical. The relative importance of the structurally uncoupled
modes is more clearly illustrated in the following case of panel arrays with
three chordwise bays.

Stability boundaries for panel arrays with three chordwise bays are
shown in Figs. 7 and 8 where it can be seen that the structurally uncoupled
modes one, four and seven are most critical. The first and fourth mode bound-
aries were obtained using natural modes one to six and the seventh mode bound-
ary using modes four to nine. Analyses using six consecutive modes are suf-
ficient because strongest coupling occurs with the adjacent modes and the
coupling falls off rapidly away from the dominant mode. There is, for example,
no appreciable coupling between modes one, four and seven on the critical
sides of any of the three boundaries. The coupling is stronger on the por-
tions to the left, as noted earlier, but this is not important to identifi-
cation of the critical envelope. The remaining boundaries shown in Figs. 7
and 8 were obtained using the first six chordwise modes. Convergence was not
investigated in detall because these boundaries are clearly subcritical. 1In
the course of computation some points were obtained which indicate the pres-
ence of higher mode boundaries. These points (not plotted) all fall to the
left of the boundaries shown.

The critical envelopes of the stability boundaries are repeated in
superposition in Figs. 9 and 10 to illustrate the effect of the number of
streamwise bays. The broken line curve in the figures is the hypervola corre-
sponding to aluminum panels at sea level flight conditions (Eq. (7)). The
following material and altitude properties were used to define the hyperbola.

E = 10.5 x 105 psi = 7.239 x 1010 Newtons/meter?

v = 0.318

Ce = 13440 in/sec = 341 meters/sec

p = 1.1468 x 10~/ 1b-sec2/in% = 1.2256 kilograms/meter®

ps = 2.59 x 107 1b-sec?/in* = 2.7679 x 10° kilograms/meter>

Minimum thicknesses required to prevent flutter of aluminum panels
at sea level, obtained from the intersections of the hyperbola with the crit-
ical envelopes, are given in Table I. The corresponding flutter vectors are
given in Table II; a precise definition of the tabulated quantities is given
in the following paragraph.

10



The deflection shape at flutter of a panel array with L streamwise
vays, each of length a and width b , is given by

Flx,7,t) = eMtsin(ry/s) { S aeioly j(x)} (6)

J

where x 1s the streamwise coordinate, y the spanwise coordinate, and & (x)
the Jth natural vibration mode shape of a continuous, simply supported beam
with L equal bays.¥ The quantities given in Table II are the q. and ej

of the above formulation. For the present analysis the &.(x) are normalized
on the basis of unit rms amplitude, i.e., each éj(x) is multiplied by a suit-
able constant to satisfy the condition

L 1/2

{% /’ tbjz(x)dx} =1

0

The above choice for normalization yields almost the same results for qj in
Table II as normalization on the basis of unit maximum amplitudes.¥¥

The numerical results will now be discussed and compared with the
results obtained by other investigators.

B. Effect of Number of Streamwise Bays

The numerical results show that increasing the number of streamwise
bays in an array of simply supported flat panels has a pronounced destabi-
lizing effect, i.e., the array becomes much more susceptible to flutter. The
critical envelopes in Figs. 9 and 10 show this effect to extend throughout the
entire practical range of the mass ratlio parameter 1/M . The figures further
show that the destabilizing effect is

(a) Iarger for the larger aspect ratio, and

(b) Proportionately greater when the number of streamwise bays is
increased from one to two than when a third panel is added to a two bay array.

¥ For formulation of the §&. (x) see for example Ref. 1. Normalized mode
shapes are shown in Flg 2.
¥¥ Tf normalization on the basis of unit maximum amplitude is employed, the
qj will be identical for the one bay arrays; the structurally coupled
mode components will increase by a factor of 1.04 for the two bay arrays
and 1.2 - 1.4 for the three bay arrays. The phase angle ej is
unaffected.

11



Table I illustrates the above effect quantitatively for the case of aluminum
panels at sea level flight conditions. It is seen in the table that for
panels of aspect ratio 4, adding a second streamwise bay almost doubles the
thickness required to prevent flutter. Adding a third panel increases the
thickness requirement to 2.2 times that necessary to prevent flutter of the
single panel. For panels of aspect ratio 2 the corresponding thickness ratios
are 1.44 and 1.51.

A second general result is that the critical envelope of boundaries
for the multi-bay arrays is dominated by the structurally uncoupled natural
streamwise modes.* Since this implies relatively weak structural coupling
between the panels it must be concluded that aerodynamic coupling is the pri-
mary cause of the observed destabilization which accompanies the increase in
the number of streamwise bays.

Another interesting feature is illustrated by Table I. For the case
of aspect ratio 4 the single panel flutters in the second mode whereas the
arrays with two and three bays flutter in the first mode. The transfer of
flutter mode correlates with the pronounced increase in thickness required to
prevent flutter. However, in the case of panels with aspect ratio 2, the
thickness required does no increase so drastically. This can probably be
partly accounted for by the fact that, in one sense, the flutter mode does not
change as the number of bays is increased. For instance, Table I shows that
the one, two and three bay arrays flutter in the second, third and fourth
modes, respectively. However, in each case the deflection shape in any one
panel is a complete sine wave. Therefore, from the individual panel point of
view there is no transfer of flutter mode as the number of bays increases.

The preceding observations on the effects of increasing the number
of streamwise bays agree qualitatively with previous analyses of two-dimen-
sional panel arrays (Refs. 2-6). Quantitative comparison can be made with
Zeydel's analysis [4] of aluminum panels at sea level which omits the effects
of structural coupling and damping. At Mach number 1.35 Zeydel found the
thickness required to prevent flutter of two and three bay arrays to increase
by factors of 1.56 and 1.68, respectively, over the thickness required for a
single panel. These ratios are smaller than the corresponding values of 1.92
and 2.21 obtained in the present analysis for panels of aspect ratio 4. How-
ever, at this particular Mach number, Zeydel's results show that flutter
occurs in the first mode for all cases. Moving to Mach number 1.4 where the
flutter mode transfers from two to one, as observed in the present analysis,
the thickness ratios are 1.98 and 2.31. These latter ratios are in close
agreement with present results. The above comparison implies that the results
obtained here for Mach number 1.35 must not be generalized to other Mach
numbers in the low supersonic regime.

% The odd numbered modes for the two bay arrays and modes 1, 4, 7, 10, etc.
For the three bay arrays. These modes are characterized by vanishing
bending moments at the panel boundaries.

12



C. Effect of Aspect Ratio

The preceding discussion deals primarily with the effect of the
number of streamwise bays on the flutter of finite flat panel arrays composed
of one spanwise bay and one, two and three streanwise bays. It is now desir-
able to consider the influence of aspect ratio. The most apparent influence
is the stabilization obtained by decreasing the aspect ratio. This effect is
illustrated in Figs. 3 through 8 by the overall contraction of the unstable
regions which accompanies reduction of the aspect ratio from 4 to 2. The
figures also show that the stabilizing effect becomes more pronounced as the
number of streamwise bays increases. Quantitative evaluation of the above
influence can be obtained from Table I for aluminum panels at sea level. TFor
the single panels the thickness to prevent flutter reduces by 19 per cent in
going from aspect ratio 4 to 2. The corresponding thickness reductions for
the two and three bay arrays are 39 per cent and 44 per cent, respectively.

It is also interesting to observe that the thickness to prevent flutter of a
three bay array of panels of aspect ratio 2 is only 1.23 times the thickness
required for a single panel of aspect ratio 4. These results suggest that
reduction of aspect ratio may be preferable to increasing panel thickness as
a means for preventing the flutter of multi-bay arrays.

A second effect of aspect ratio (not conveniently shown in the
figures) is an increase in coupling between modes with decreasing aspect
ratio. This implies increased structural coupling between streamwise panels.
The latter probably contributes to increased stability, because Figs. 3
through 8 show that the structurally coupled modes are less easily excited.
It also means that as aspect ratio decreases it becomes more important to
include the effect of structural coupling in a flutter analysis.

D. Effect of Finite Span

The present analytical technique is similar to that of [5,8] with
the exception that finite span arrays are investigated here whereas in LSﬂﬂ
the span is assumed to extend to infinity in discrete, uniform bays. Although
only limited comparison can be made between the two techniques because of the
present restriction to one Mach number, it appears that the finite span
approach yields slightly less conservative results, i.e., computed thickness
to prevent flutter is slightly smaller. The effect also appears to be some-
what greater for the smaller aspect ratio panels. For example, critical
thicknesses for single panels at sea level are shown below as obtained with
the two techniques.
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Thickness to Prevent Flutter

Aspect Ratio Reference 8 Present Analysis
2 0.00790 0.00758
4 0.00%28 0.00925

Although the above results show little variation it would be of interest to
compare the two techniques in application to multiple streamwise bay arrays
of smaller aspect ratio.

V. CONCLUSIONS

On the basis of results obtained in the present flutter analysis of
simply supported, multiple streamwise bay flat panel arrays for Mach number
1.35 and structural damping coefficient equal to 0.01 it is concluded that:

(1) The addition of streamwise panels is destabilizing.

(2) The destabilizing effect is proportionately greater when the
number of streamwise bays is increased from one to two, than when a third
panel is added to a two bay array.

(3) The destabilizing effect is greater for panels of large aspect
ratio.

(4) The primary mechanism of destabilization is aerodynamic
coupling between the streamwise panels.

(5) Decreasing panel aspect ratio has a stabilizing effect which
increases with number of streanwise panels.

(6) The qualitative features of the results obtained in this
analysis can be extrapolated to other Mach numbers in the low supersonic
regime. However, the quantitative effect of increasing the number of stream-
wise bays is Mach number dependent, and cannot be obtained by extrapolation.
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TABLE I

MINIMUM THICKNESS TO PREVENT FLUTTER
OF ALUMINUM PANELS AT SEA LEVEL

Aspect Number Reduced Minimum Thickness Dominant Mode
Ratio of Bays Frequency to Prevent Flutter in Flutter Vector

4 1 1.215 0.00925 2

2 1 1.0385 .00758 2

4 2 0.595 .0L783 1

2 2 1.505 .01074 3

4 3 0.715 .02040 1

2 3 1.555 .01143 4

TABLE IT

TABULATION OF FLUTTER VECTOR

Aspect Ratio - 2
Number of Streamwise Bays

1 2 3

q. e. q. e- q'j ej
0.18037 2.9309 0.01937 -0.5421 0.01766 2.7602
1.0 0 0.08126 -0. 4662 0.02007 2.6405
0.08102 3.0772 1.0 0 0.08409 -0.4930
0.00436 -0.2846 0.09730 3.1156 1.0 0

- - 0.00575 -0.7410 0.15014 3.0535

- - 0.01754 -0.3126 0.00979 -1.1932

Aspect Ratio - 4

Number of Streamwise Bays
1 2 3

9. 9. q. e. q. e.

0.10596 2.8718 1.0 0 1.0 0

1.0 0 0.04929 0.1589 0.06885 0.2431

0.04753 3.0701 0.00133 4.7564 0.00097 -3.7153

0.00182 -0.3906 0.00901 2.9923 0.00360 =-3.3447
- - 0.00018 4.6434 0.00124 -0.6262
- - - - 0.00429 -3.4258
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